
Key Chaining for Access 
Control and Instant Secure 

Deletion
James A Sutherland 

University of Abertay Dundee



Background: Unix FS 1
• Standard Unix principals: 

• User 

• Group 

• Other 

• Permission bits: 

• Read 

• Write 

• Execute



Background: Unix FS 2

• Each file is just a numbered inode 

• Directory: list of name => node number 

• The directory is itself a file, with the same ACL



Traversal Example

/

var home

tim tina

home: write(root), read(users)

tina: write(tina)



Cold Boot Attack

• Replace the OS with your own 

• Easy to change or ignore any flag you like!



Read Protection

• That one’s easy: encrypt, hide the key. 

• Different key per block (convergent encryption) 

• Instead of “block n” store “block n with key/hash X”



Write Protection

• Slightly more complicated… 

• Instead of a straight checksum (ZFS SHA256): 

• Use a signature. Private key == write key.



Execute

• Trick question - reading IS executing! 

• Except for directories: 

• ’execute’ = open by name 

• ‘read’ = enumerate names



Directories

• This is the clever bit… 

• Instead of just the inode number, store key list too 

• So, can’t access a file except via directory 

• (“Traverse checking”: Unix does, NT doesn’t by 
default, though the NSA kit changes that)



Deleting Files

• Normally, either ‘mark’ deleted (a flag) 

• Easy to recover with forensic tools 

• Still requires marking every file individually 

• Or overwrite to prevent recovery 

• Takes O(n) time in file size: delete 10Gb is slow!



Faster Deletion

• Delete a file: zero the key, contents not recoverable 

• Zero a directory’s key, whole directory gone in one 

• (Append its block list to the free list for later reuse)



Deduplicating Encrypted 
File Contents

• Convergent encryption: use a hash of each block as 
the key 

• Good: can’t decrypt block without already knowing 
either the contents, or its hash 

• But, privacy issue: allows detection of blocks of data 

• “Has this user got a copy of Windows 10?”



Deduplicating Securely With 
Privacy

• Instead of a straight hash, use HMAC 

• Prevents searching without knowing the key 

• Tradeoff between effectiveness and privacy 

• Inherent information leak through dedupe count: 

• Add the target block(s), check free space counter 

• Mitigation: deduplication domains 

• Write access to a DD implies ability to search for collisions



Performance
• What’s the overhead of all this hashing and encrypting? 

• Smaller than you’d think 

• Hash in memory as part of async write path 

• No latency impact 

• Extra write needed to update reference checksum though 

• Decrypt and check checksum on read 

• Some latency impact, but no extra seeks 

• Extra 4-7k (Poly1305, AES) of code in FS codebase; ~30k cycles for 4k (from 
http://cr.yp.to/)

http://cr.yp.to/


Authentication
• The file system’s job is normally confined to 

authorisation rather than authentication 

• However, if we’re storing the user’s keys … 

• Store with other account data, part-encrypt with hash 
of password 

• Wait - password - what about SSH key auth? 

• Could encrypt the user data with each public key too



Project Overview
• Mostly, surprisingly small extensions to ext4 

structures 

• (Adding hash/key to each block reference, not 
using extent mode) 

• Plus changing the free list more significantly, 
adding a directory-delete operation 

• Authentication and SSH extensions much further off


